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Abstract— The Genetic Algorithm (GA) requires randomized 
initial population so as to give requisite results. The work 
proposes the use of Cellular Automata (CA) to generate the 
initial population for GA. The numbers generated by clubbing 
these two processes will make a better set of random numbers 
as compared to existing methodologies. The quality of the 
random numbers generated has been tested by Gap Test and 
Karl Pearson coefficient of correlation test. So as to ensure the 
goodness of random numbers coefficient of auto correlation 
has also been calculated. This technique can be used to 
generate keys in cryptography and it will be nearly impossible 
to guess the key as both the techniques are of natural ethos 
and not mathematical in nature. 
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I. INTRODUCTION 

Genetic Algorithms (GAs) are a type of optimization 
algorithms which combine survival of the fittest and a 
simplified version of genetic process [1]. Cellular Automata 
are distributed system which can perform complex 
computation. It has as yet not been established whether 
cryptography can be considered as a problem apt for 
applying the combination of CA and GAs. Therefore the 
work explores the use of combination of CA and GAs in 
cryptography. A detailed study on the success of GAs in 
cryptography was carried out by Bethany Delman [2] but it 
was limited to breaking the cipher text with GAs. This work 
takes the example of Vernam Cipher to apply both CA and 
GAs and proposes a new technique to produce a key which 
can substitute One Time Pad (OTP) or Pseudo Random 
Number Generator (PRNG) [2]. 

 
The patterns of cellular automata are predictable and well 

defined. The problem therefore was reduced to change them 
to unpredictable patterns. The analysis carried out 
suggested that few of the 256 patters; 48 to be precise; are 
good contenders of initial population generation module of 
GAs. The patterns generated were subjected to a technique 
described in the following sections to get the initial set of 
chromosomes. These were put to crossover and mutation 
operation to get the final population. The complete 
technique has been implemented and the randomness of the 
population generated calculated. The experiments carried 
out established the ability of CA and GAs to produce a 
good random sample. If the key of the Vernam Cipher is 
selected from that sample then it is found to be less 
predictable as compared to PRNG used by Microsoft Visual 
C#. 

II. RANDOM NUMBERS 

Random number generation is the art of producing pure 
gibberish as quickly as possible. According to Eric Hoffer 
“creativity is the ability to introduce order into the 
randomness of nature”. So in order to be creative also we 
need random numbers. It has been shown that most of the 
random number generators cannot be regarded as a ‘true’ 
random number generator. Since its output is predictable 
[4]. The physical method of producing random number may 
include atomic or subatomic physical phenomenon. The 
need to generate random number as early as possible for 
cryptographic systems led to the creation of random bit 
generator Working at 300 gigabit per second at the bar 
LLAN University in Israel .In a random number generator 
even the slightest pattern cannot be tolerated. To detect 
such bias, we have a wide variety of tests. Test results are 
usually reported as autocorrelation measure. If random, 
such autocorrelations should be near zero for any and all 
time-lag separations. If non-random, then one or more of 
the autocorrelations will be significantly non-zero. In our 
case the autocorrelation measure is approximately 0.04, 
which is considered as a good random sample. Moreover 
the above method opens window of AI to a new process of 
generation of Random numbers. 

III. CELLULAR AUTOMATA 

The history of CA dates back to the forties. It was started 
by Stanislaw Ulam. His aim was to study the evolution of 
graphic constructions generated by simple rules. The base 
of the construction was a two-dimensional space divided 
into cells. Each of these cells had two states: ON or OFF. 
Starting from a given pattern, the new generations were 
formed according to neighborhood rules. Ulam found that 
this mechanism permitted to generate complex figures and 
that these figures could be self-reproducing. Simple rules 
were made to build very complex patterns. The question 
that needs to be analyzed is whether the complexity is 
apparent or real [5]. These rules were studied by John von 
Neumann for use in self-reproductive automata .He worked 
on the conception of a self-reproductive machine, the 
"kinematic". Such a machine was supposed to be able to 
reproduce any machine described in its programs; including 
a copy of itself. This led to libration from real physical 
constraints to work in an extremely simplified universe that 
was able to generate a high complexity. The use of this 
formal universe led him to notice: 
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"By axiomatizing [self-reproductive automata with 
cellular automata], one has thrown half of the problem out 
the window, and it may be the more important half. One has 
resigned oneself not to explain how these parts are made up 
of real things, specifically, how these parts are made up of 
actual elementary”. Van designed 29 states cells, containing 
a universal replicator, a description of itself and a Turing 
machine for supervision. CA left laboratories in 1970 with 
the now famous Game of Life of John Horton Conway. 

IV. GENETIC ALGORITHMS 

A genetic algorithm is a search heuristic that mimics the 
process of natural evolution used to generate useful 
solutions to optimization and search problems. Genetic 
Algorithms are a subset of what we call evolutionary 
algorithm which solves optimization problem using 
techniques inspired by natural evolution such as inheritance, 
mutation, selection, and crossover [6]. 

John Holland from the University of Michigan started his 
work on genetic algorithms at the beginning of 60s. A first 
achievement was the publication of Adaption in Natural and 
Artificial System in 1975. Holland has two aims, first to 
improve the understanding of natural adaption process, 
second to design artificial systems having properties similar 
to natural systems. Holland method considers the role of 
mutation and also utilizes genetic recombination that is 
crossover to find the optimum solution. 

Crossover and mutation are two basic operators of GA. 
Performance of GA depend on them. Type and 
implementation of operators depends on encoding and also 
on a problem.  

There are many ways of how to do crossover and 
mutation. 

A. Crossover 

1)  Single point crossover:  In this case one crossover 
point is selected, binary string from beginning of 
chromosome to the crossover point is copied from one 
parent, and the rest is copied from the second parent. 

11001011+11011111 = 11001111 

2)  Two point crossover:  Here two crossover point are 
selected, binary string from beginning of chromosome to 
the first crossover point is copied from one parent, the part 
from the first to the second crossover point is copied from 
the second parent and the rest is copied from the second 
parent and the rest is copied from the first parent. 

11001011 + 11011111 = 11011111 

3)  Uniform crossover:  In this method bits are randomly 
copied from the first or from the second parent. 

11001011 + 11010101 = 11010101 

 

B. Mutation 

Mutation is a genetic operator used to maintain genetic 
diversity from one generation of a population of algorithm 
chromosomes to the next. It is similar to biological 
mutation. 

Method given in most of the sources including 
Wikipedia: An example of a mutation operator involves a 
probability that an arbitrary bit in a genetic sequence will be 
changed from its original state. A common method of 
implementing the mutation operator involves generating a 
random variable for each bit in a sequence. This random 
variable tells whether or not a particular bit will be 
modified. This mutation procedure, based on the biological 
point mutation, is called single point mutation. Other types 
are inversion and floating point mutation. When the gene 
encoding is restrictive as in permutation problems, 
mutations are swaps, inversions and scrambles. 

The purpose of mutation in GAs is preserving and 
introducing diversity. Mutation should allow the algorithm 
to avoid local minima by preventing the population of 
chromosomes from becoming too similar to each other. 

C. Reproduction and Selection 

Chromosomes are selected from the population to be 
parents to crossover. According to Darwin’s evolution 
theory the best ones should survive and create new 
offspring. There are many methods how to select the best 
chromosomes, for example roulette wheel selection. 

1)  Roulette Wheel Selection:  Parents are selected 
according to their fitness. The better the chromosomes are, 
the more chances to be selected they have. Imagine a 
roulette wheel where are placed all chromosomes in the 
population, every chromosome has its place big accordingly 
to its fitness function. 

V. PROPOSED WORK 

The following process uses CA to generate the initial 
population of GAs and implement a Random Number 
Generator (RNG) which uses the best parts of both the 
techniques. The RNG generated by the method given below 
retains the simplicity of the genetic process and is more 
efficient then the key generation processes of DES and AES. 
Still it gives result comparable to both of them. The process 
has been explained in this section 

A. Generate Elementary Cellular Automata 

Elementary Cellular Automata is produced for all the 256 
rules in the form of bits (0 and 1).  

256 matrices of 100 X 100 are obtained.  

B. Matrix Reduction 

For each matrix rows are divided into 10 equal parts, 
resulting in 10 bits in each part. 

For each part majority is to be calculated. If number of 
one’s is greater than or equal to number of zeroes, then, that 
part is replaced by 1; else it is replaced by 0. 

Thus, 100 X 100 matrix is reduced to 100 X 10 matrix. 
Thus, 256 matrices of 100 X 10 are obtained.  

C. Analysis 

Matrices resulting in random patterns are considered and 
analyzed and 48 such matrices are separated. These 
matrices will be used in the following steps to produce the 
initial population of Genetic Algorithm. 
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D. Random Selection of Rule 

A rule is randomly selected from a set of 48 values and 
its reduced matrix is obtained. 

E. Crossover 

From the above reduced matrix of 100 X 10, 2 random 
rows are selected and Crossover operator is applied on them 
and a new row is obtained. 

F. Mutation 

Mutation Operator is applied on the above row and new 
random population is obtained.  

G. Decimal Representation 

Decimal representation of above obtained row is 
calculated, and can be used as a key. 

 
Autocorrelation test, Gap test and Karl Pearson 

coefficient of correlation test is applied on a data of keys 
obtained. 

Fig. 1 explains the above process. 
 

 
Fig. 1  Example of an image with acceptable resolution 

Due to limited resources and time, decimal 
representation has been used in step 7. Instead of operating 
the row obtained after mutation operator with 2, a random 
number between 2 to 100 can be generated and applied on 
the population obtained in step 6, thus increasing the range 
of random numbers. By this variation the range of random 
number become so large that the given technique, if 
carefully analyzed and accepted will have the capability of 
surpassing mathematical algorithms like AES. 

 

VI. CONCLUSIONS 

The above technique has been implemented and samples 
have been generated. The implementation has been done in 
C#. Samples have been collected and analyzed in Microsoft 
Excel, Various tests have been applied on the sample and 
most of them give satisfactory results. 

Since, around a 1000 values were analyzed and no 
repetition was obtained therefore frequency test was not 
applied. The coefficient of autocorrelation was calculated 
for k = 1 to k = 19. The result for k = 1 was 0.04, thus 
indicating a good random sample. 

In a next test, a time series has also been considered and 
Karl Pearson Coefficient of correlation has been calculated, 
also giving satisfactory data. 

In the analysis of data, a correlogram is an image of 
correlation statistics. In time series analysis, a correlogram, 
also known as an autocorrelation plot, is a plot of the 
sample autocorrelations  versus  (the time lags). The 
correlogram is a commonly used tool for checking 
randomness in a data set. This randomness is ascertained by 
computing autocorrelations for data values at varying time 
lags. If random, such autocorrelations should be near zero 
for any and all time-lag separations. If non-random, then 
one or more of the autocorrelations will be significantly 
non-zero. Such correlogram has also been plotted for our 
sample data. 

The majority was calculated by taking a group of 10 cells. 
If more samples are needed then a set of 5 cells can also be 
taken. The whole process is being enhanced and analyzed. 
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