
Cellular-Genetic Key Generation Algorithm
Neha Singla

Assistant Professor, Department of Computer Science and Engineering
 Manav Rachna College of Engineering,

Faridabad, India

Abstract— The Genetic Algorithm (GA) requires randomized
initial population so as to give requisite results. The work
proposes the use of Cellular Automata (CA) to generate the
initial population for GA. The numbers generated by clubbing
these two processes will make a better set of random numbers
as compared to existing methodologies. The quality of the
random numbers generated has been tested by Gap Test and
Karl Pearson coefficient of correlation test. So as to ensure the
goodness of random numbers coefficient of auto correlation
has also been calculated. This technique can be used to
generate keys in cryptography and it will be nearly impossible
to guess the key as both the techniques are of natural ethos
and not mathematical in nature.

Keywords— Random Number Generator, Cellular Automata,
Genetic Algorithms, Cryptography, Vernam Cipher.

I. INTRODUCTION

Genetic Algorithms (GAs) are a type of optimization
algorithms which combine survival of the fittest and a
simplified version of genetic process [1]. Cellular Automata
are distributed system which can perform complex
computation. It has as yet not been established whether
cryptography can be considered as a problem apt for
applying the combination of CA and GAs. Therefore the
work explores the use of combination of CA and GAs in
cryptography. A detailed study on the success of GAs in
cryptography was carried out by Bethany Delman [2] but it
was limited to breaking the cipher text with GAs. This work
takes the example of Vernam Cipher to apply both CA and
GAs and proposes a new technique to produce a key which
can substitute One Time Pad (OTP) or Pseudo Random
Number Generator (PRNG) [2].

The patterns of cellular automata are predictable and well

defined. The problem therefore was reduced to change them
to unpredictable patterns. The analysis carried out
suggested that few of the 256 patters; 48 to be precise; are
good contenders of initial population generation module of
GAs. The patterns generated were subjected to a technique
described in the following sections to get the initial set of
chromosomes. These were put to crossover and mutation
operation to get the final population. The complete
technique has been implemented and the randomness of the
population generated calculated. The experiments carried
out established the ability of CA and GAs to produce a
good random sample. If the key of the Vernam Cipher is
selected from that sample then it is found to be less
predictable as compared to PRNG used by Microsoft Visual
C#.

II. RANDOM NUMBERS

Random number generation is the art of producing pure
gibberish as quickly as possible. According to Eric Hoffer
“creativity is the ability to introduce order into the
randomness of nature”. So in order to be creative also we
need random numbers. It has been shown that most of the
random number generators cannot be regarded as a ‘true’
random number generator. Since its output is predictable
[4]. The physical method of producing random number may
include atomic or subatomic physical phenomenon. The
need to generate random number as early as possible for
cryptographic systems led to the creation of random bit
generator Working at 300 gigabit per second at the bar
LLAN University in Israel .In a random number generator
even the slightest pattern cannot be tolerated. To detect
such bias, we have a wide variety of tests. Test results are
usually reported as autocorrelation measure. If random,
such autocorrelations should be near zero for any and all
time-lag separations. If non-random, then one or more of
the autocorrelations will be significantly non-zero. In our
case the autocorrelation measure is approximately 0.04,
which is considered as a good random sample. Moreover
the above method opens window of AI to a new process of
generation of Random numbers.

III. CELLULAR AUTOMATA

The history of CA dates back to the forties. It was started
by Stanislaw Ulam. His aim was to study the evolution of
graphic constructions generated by simple rules. The base
of the construction was a two-dimensional space divided
into cells. Each of these cells had two states: ON or OFF.
Starting from a given pattern, the new generations were
formed according to neighborhood rules. Ulam found that
this mechanism permitted to generate complex figures and
that these figures could be self-reproducing. Simple rules
were made to build very complex patterns. The question
that needs to be analyzed is whether the complexity is
apparent or real [5]. These rules were studied by John von
Neumann for use in self-reproductive automata .He worked
on the conception of a self-reproductive machine, the
"kinematic". Such a machine was supposed to be able to
reproduce any machine described in its programs; including
a copy of itself. This led to libration from real physical
constraints to work in an extremely simplified universe that
was able to generate a high complexity. The use of this
formal universe led him to notice:

Neha Singla / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6846-6848

www.ijcsit.com 6846

"By axiomatizing [self-reproductive automata with
cellular automata], one has thrown half of the problem out
the window, and it may be the more important half. One has
resigned oneself not to explain how these parts are made up
of real things, specifically, how these parts are made up of
actual elementary”. Van designed 29 states cells, containing
a universal replicator, a description of itself and a Turing
machine for supervision. CA left laboratories in 1970 with
the now famous Game of Life of John Horton Conway.

IV. GENETIC ALGORITHMS

A genetic algorithm is a search heuristic that mimics the
process of natural evolution used to generate useful
solutions to optimization and search problems. Genetic
Algorithms are a subset of what we call evolutionary
algorithm which solves optimization problem using
techniques inspired by natural evolution such as inheritance,
mutation, selection, and crossover [6].

John Holland from the University of Michigan started his
work on genetic algorithms at the beginning of 60s. A first
achievement was the publication of Adaption in Natural and
Artificial System in 1975. Holland has two aims, first to
improve the understanding of natural adaption process,
second to design artificial systems having properties similar
to natural systems. Holland method considers the role of
mutation and also utilizes genetic recombination that is
crossover to find the optimum solution.

Crossover and mutation are two basic operators of GA.
Performance of GA depend on them. Type and
implementation of operators depends on encoding and also
on a problem.

There are many ways of how to do crossover and
mutation.

A. Crossover

1) Single point crossover: In this case one crossover
point is selected, binary string from beginning of
chromosome to the crossover point is copied from one
parent, and the rest is copied from the second parent.

11001011+11011111 = 11001111

2) Two point crossover: Here two crossover point are
selected, binary string from beginning of chromosome to
the first crossover point is copied from one parent, the part
from the first to the second crossover point is copied from
the second parent and the rest is copied from the second
parent and the rest is copied from the first parent.

11001011 + 11011111 = 11011111

3) Uniform crossover: In this method bits are randomly
copied from the first or from the second parent.

11001011 + 11010101 = 11010101

B. Mutation

Mutation is a genetic operator used to maintain genetic
diversity from one generation of a population of algorithm
chromosomes to the next. It is similar to biological
mutation.

Method given in most of the sources including
Wikipedia: An example of a mutation operator involves a
probability that an arbitrary bit in a genetic sequence will be
changed from its original state. A common method of
implementing the mutation operator involves generating a
random variable for each bit in a sequence. This random
variable tells whether or not a particular bit will be
modified. This mutation procedure, based on the biological
point mutation, is called single point mutation. Other types
are inversion and floating point mutation. When the gene
encoding is restrictive as in permutation problems,
mutations are swaps, inversions and scrambles.

The purpose of mutation in GAs is preserving and
introducing diversity. Mutation should allow the algorithm
to avoid local minima by preventing the population of
chromosomes from becoming too similar to each other.

C. Reproduction and Selection

Chromosomes are selected from the population to be
parents to crossover. According to Darwin’s evolution
theory the best ones should survive and create new
offspring. There are many methods how to select the best
chromosomes, for example roulette wheel selection.

1) Roulette Wheel Selection: Parents are selected
according to their fitness. The better the chromosomes are,
the more chances to be selected they have. Imagine a
roulette wheel where are placed all chromosomes in the
population, every chromosome has its place big accordingly
to its fitness function.

V. PROPOSED WORK

The following process uses CA to generate the initial
population of GAs and implement a Random Number
Generator (RNG) which uses the best parts of both the
techniques. The RNG generated by the method given below
retains the simplicity of the genetic process and is more
efficient then the key generation processes of DES and AES.
Still it gives result comparable to both of them. The process
has been explained in this section

A. Generate Elementary Cellular Automata

Elementary Cellular Automata is produced for all the 256
rules in the form of bits (0 and 1).

256 matrices of 100 X 100 are obtained.

B. Matrix Reduction

For each matrix rows are divided into 10 equal parts,
resulting in 10 bits in each part.

For each part majority is to be calculated. If number of
one’s is greater than or equal to number of zeroes, then, that
part is replaced by 1; else it is replaced by 0.

Thus, 100 X 100 matrix is reduced to 100 X 10 matrix.
Thus, 256 matrices of 100 X 10 are obtained.

C. Analysis

Matrices resulting in random patterns are considered and
analyzed and 48 such matrices are separated. These
matrices will be used in the following steps to produce the
initial population of Genetic Algorithm.

Neha Singla / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6846-6848

www.ijcsit.com 6847

D. Random Selection of Rule

A rule is randomly selected from a set of 48 values and
its reduced matrix is obtained.

E. Crossover

From the above reduced matrix of 100 X 10, 2 random
rows are selected and Crossover operator is applied on them
and a new row is obtained.

F. Mutation

Mutation Operator is applied on the above row and new
random population is obtained.

G. Decimal Representation

Decimal representation of above obtained row is
calculated, and can be used as a key.

Autocorrelation test, Gap test and Karl Pearson

coefficient of correlation test is applied on a data of keys
obtained.

Fig. 1 explains the above process.

Fig. 1 Example of an image with acceptable resolution

Due to limited resources and time, decimal
representation has been used in step 7. Instead of operating
the row obtained after mutation operator with 2, a random
number between 2 to 100 can be generated and applied on
the population obtained in step 6, thus increasing the range
of random numbers. By this variation the range of random
number become so large that the given technique, if
carefully analyzed and accepted will have the capability of
surpassing mathematical algorithms like AES.

VI. CONCLUSIONS

The above technique has been implemented and samples
have been generated. The implementation has been done in
C#. Samples have been collected and analyzed in Microsoft
Excel, Various tests have been applied on the sample and
most of them give satisfactory results.

Since, around a 1000 values were analyzed and no
repetition was obtained therefore frequency test was not
applied. The coefficient of autocorrelation was calculated
for k = 1 to k = 19. The result for k = 1 was 0.04, thus
indicating a good random sample.

In a next test, a time series has also been considered and
Karl Pearson Coefficient of correlation has been calculated,
also giving satisfactory data.

In the analysis of data, a correlogram is an image of
correlation statistics. In time series analysis, a correlogram,
also known as an autocorrelation plot, is a plot of the
sample autocorrelations versus (the time lags). The
correlogram is a commonly used tool for checking
randomness in a data set. This randomness is ascertained by
computing autocorrelations for data values at varying time
lags. If random, such autocorrelations should be near zero
for any and all time-lag separations. If non-random, then
one or more of the autocorrelations will be significantly
non-zero. Such correlogram has also been plotted for our
sample data.

The majority was calculated by taking a group of 10 cells.
If more samples are needed then a set of 5 cells can also be
taken. The whole process is being enhanced and analyzed.

REFERENCES
[1] H. Bhasin, and N. Arora, “Key Generation for cryptography using

Genetic Algorithms,” proceedings of (ICRITO) International
Conference on Reliability, Infocom Technology and Optimization,
pp 226 – 231, 1 – 3 November, 2010.

[2] B. Delman, “Genetic Algorithms in cryptography,” Published in
web, July 2004.

[3] G. S. Verman, “Cipher printing Telegraph Systems for secret wire
and radio Telegraph Communications”, Journal of IEEE, vol 55, pp
109 – 115, 1926.

[4] H. Bhasin, “Corpuscular Random Number Generator,” proceedings
of International Conference on Network Communication and
Computer 2011, IEEE, pp 541 – 543, March 21 – 23, 2011.

[5] S. Wolfram, “Cellular Automata and Complexity: Collected
Papers,” ISBN 0-201-62716-7, 1994.

[6] H. Bhasin and S. Bhatia, “Application of Genetic Algorithms in
Machine learning”, (IJCSIT) International Journal of Computer
Science and Information Technologies, Vol. 2 (5), pp 2412 – 2415,
2011.

[7] H. Bhasin, S. Arora, “Use of Genetic Algorithms for finding roots
of algebraic equations”, IJCSIT, Vol. 2(4), pp-693-696.

[8] H. Bhasin, N. Singla, “Cellular automata based test data generation”,
ACM Sigsoft software engineering notes, Vol. 38(4), pp- 1-7.

[9] H. Bhasin et. al. “ regression testing using fuzzy logic”, IJCSIT, Vol.
4(2), pp 378-380.

[10] H. Bhasin, N. Singla, “Genetic based algorithm for N-puzzle
problem”, IJCA, 51(22), pp-44-50.

[11] Harsh Bhasin et. al,” Harnessing Genetic Algorithm for vertex
cover problem”, IJCSE, 4(2).

Neha Singla / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6846-6848

www.ijcsit.com 6848

